On some Generalized q-Eulerian Polynomials
نویسنده
چکیده
The (q, r)-Eulerian polynomials are the (maj−exc, fix, exc) enumerative polynomials of permutations. Using Shareshian and Wachs’ exponential generating function of these Eulerian polynomials, Chung and Graham proved two symmetrical q-Eulerian identities and asked for bijective proofs. We provide such proofs using Foata and Han’s three-variable statistic (inv−lec, pix, lec). We also prove a new recurrence formula for the (q, r)-Eulerian polynomials and study a q-analogue of Chung and Graham’s restricted Eulerian polynomials. In particular, we obtain a symmetrical identity for these restricted q-Eulerian polynomials with a combinatorial proof. Résumé. Les (q, r)-polynômes Eulériens sont les polynomômes énumératives des permutations par rapport au poids (maj−exc, fix, exc). En utilisant la fonction génératrice de ces polynômes Eulériens due à Shareshien et Wachs, Chung et Graham ont démontré deux identités symétriques q-Eulériennes et demandé des preuves bijectives. Nous donnons de telles preuves en utilisant les statistiques trivariées (inv−lec, pix, lec) de Foata et Han. Nous démontrons aussi une nouvelle récurrence pour ces (q, r)-polynômes Eulériens et étudions un q-analogue des polynômes Eulériens restreints de Chung et Graham. En particulier, nous obtenons une identité symétrique pour ces q-polynômes Eulériens restreints avec une preuve combinatoire.
منابع مشابه
Generating Functions for q-Apostol Type Frobenius-Euler Numbers and Polynomials
The aim of this paper is to construct generating functions, related to nonnegative real parameters, for q-Eulerian type polynomials and numbers (or q-Apostol type Frobenius–Euler polynomials and numbers). We derive some identities for these polynomials and numbers based on the generating functions and functional equations. We also give multiplication formula for the generalized Apostol type Fro...
متن کاملSymmetry Fermionic p-Adic q-Integral on ℤp for Eulerian Polynomials
Kim et al. 2012 introduced an interesting p-adic analogue of the Eulerian polynomials. They studied some identities on the Eulerian polynomials in connection with the Genocchi, Euler, and tangent numbers. In this paper, by applying the symmetry of the fermionic p-adic q-integral on Zp, defined by Kim 2008 , we show a symmetric relation between the q-extension of the alternating sum of integer p...
متن کاملStatistics on staircase tableaux, eulerian and mahonian statistics
We give a simple bijection between some staircase tableaux and tables of inversion. Some nice properties of the bijection allows us to define some q-Eulerian polynomials related to the staircase tableaux. We also give a combinatorial interpretation of these q-Eulerian polynomials in terms of permutations. Résumé. Nous proposons une bijection simple entre certains tableaux escalier et les tables...
متن کاملGeneralized Exponential Euler Polynomials and Exponential Splines
Here presented is constructive generalization of exponential Euler polynomial and exponential splines based on the interrelationship between the set of concepts of Eulerian polynomials, Eulerian numbers, and Eulerian fractions and the set of concepts related to spline functions. The applications of generalized exponential Euler polynomials in series transformations and expansions are also given.
متن کاملGamma-positivity of Variations of Eulerian Polynomials
An identity of Chung, Graham and Knuth involving binomial coefficients and Eulerian numbers motivates our study of a class of polynomials that we call binomial-Eulerian polynomials. These polynomials share several properties with the Eulerian polynomials. For one thing, they are h-polynomials of simplicial polytopes, which gives a geometric interpretation of the fact that they are palindromic a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 20 شماره
صفحات -
تاریخ انتشار 2013